>>> a = [{'a': 1, 'b': 2}]
>>> x = spark.createDataFrame(a)
>>> b = sc.parallelize([(3, 4)])
>>> y = spark.createDataFrame(b, ['b', 'a'])
>>> x.collect()
[Row(a=1, b=2)]
>>> y.collect()
[Row(b=3, a=4)]
>>> z = x.union(y)
>>> z.collect()
[Row(a=1, b=2), Row(a=3, b=4)]
正确的结果应该是[Row(a=1, b=2), Row(a=4, b=3)],但实际输出的结果第二个Row的a和b反了。猜测DataFrame的union是按照顺序来的,并不是按照column的名称对应的。
Also as standard in SQL, this function resolves columns by position (not by name). Spark 2.3提供了unionByName可以解决问题,目前解决办法是把x与y的字段名排序要一样才行。
没有评论:
发表评论